Journal of Algebraic Systems (Feb 2015)

ON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS

  • Neda Ahanjideh,
  • Hajar Mousavi

DOI
https://doi.org/10.22044/jas.2015.372
Journal volume & issue
Vol. 2, no. 2
pp. 147 – 151

Abstract

Read online

Let $G$ be a non-abelian finite group. In this paper, we prove that $Gamma(G)$ is $K_4$-free if and only if $G cong A times P$, where $A$ is an abelian group, $P$ is a $2$-group and $G/Z(G) cong mathbb{ Z}_2 times mathbb{Z}_2$. Also, we show that $Gamma(G)$ is $K_{1,3}$-free if and only if $G cong {mathbb{S}}_3,~D_8$ or $Q_8$.

Keywords