Biogeosciences (Jan 2020)

Tracing terrestrial versus marine sources of dissolved organic carbon in a coastal bay using stable carbon isotopes

  • S.-A. Lee,
  • T.-H. Kim,
  • G. Kim

DOI
https://doi.org/10.5194/bg-17-135-2020
Journal volume & issue
Vol. 17
pp. 135 – 144

Abstract

Read online

The sources of dissolved organic matter (DOM) in coastal waters are diverse, and they play different roles in the biogeochemistry and ecosystems of the ocean. In this study, we measured dissolved organic carbon (DOC) and nitrogen (DON), the stable carbon isotopic composition of dissolved organic carbon (δ13C-DOC), and fluorescent dissolved organic matter (FDOM) in coastal bay waters surrounded by large cities (Masan Bay, Republic of Korea) to determine the different DOM sources in this region. The surface seawater samples were collected in two sampling campaigns (August 2011 and August 2016). The salinities were in the range of 10–21 in 2011 and 25–32 in 2016. In 2011, excess DOC was observed in high-salinity (16–21) waters; the excess DOC source was found to be mainly from marine autochthonous production according to the δ13C-DOC values (−23.7 ‰ to −20.6 ‰), the higher concentrations of protein-like FDOM, and the lower DOC∕DON (C∕N) ratios (8–15). In contrast, excess DOC observed in high-salinity waters in 2016 was characterized by low FDOM, more depleted δ13C values (−28.8 ‰ to −21.1 ‰), and high C∕N ratios (13–45), suggesting that the source of excess DOC is terrestrial C3 plants by direct land–seawater interactions. Our results show that multiple DOM tracers such as δ13C-DOC, FDOM, and C∕N ratios are powerful for determining different sources of DOM occurring in coastal waters.