Heliyon (Apr 2024)

Identification of cuproptosis-related miRNAs in triple-negative breast cancer and analysis of the miRNA–mRNA regulatory network

  • Yitao Wang,
  • Jundan Wang,
  • Jing Jiang,
  • Wei Zhang,
  • Long Sun,
  • Qidong Ge,
  • Chao Li,
  • Xinlin Li,
  • Xujun Li,
  • Shenghong Shi

Journal volume & issue
Vol. 10, no. 7
p. e28242

Abstract

Read online

Introduction: The close association between cuproptosis and tumor immunity in triple-negative breast cancer (TNBC) allows its monitoring for predicting the prognosis of patients with TNBC. Nevertheless, the biological function and prognostic value of cuproptosis-related miRNAs and their target genes have not been reported. Purpose: To construct the miRNA and mRNA-based risk models associated with cuproptosis for patients with TNBC. Methods: Comparison of expression levels for genes associated with cuproptosis was executed between patients in the normal individuals and the TCGA-TNBC cohort. Conducting differential analysis resulted in the identification of differentially expressed miRNA (DE-miRNAs) and differentially expressed genes (DEGs) between the TNBC and Control samples. Screening for prognostic miRNAs and biomarkers involved employing univariate Cox analysis and least absolute shrinkage and selection operator regression analyses. These methods were utilized to construct risk models aimed at predicting the survival of patients with TNBC. Based on the median value of risk scores, patients were then stratified into low- and high-risk groups. Functional enrichment analysis was employed to explore the potential function and pathways of prognostic genes. Additionally, independent prognostic analysis was performed through univariate and multivariate Cox regression. Immune infiltration analysis was performed to examine disparities in the infiltration of immune cells between the two risk groups. Finally, the prognostic gene expression was mined in key cell types of TNBC. Results: We obtained 5213 DEGs and 204 DE-miRNAs related to cuproptosis between TNBC and Control samples. Five prognostic miRNAs (miR-203a-3p, miR-1277–3p, miR-135b-5p, miR-200c-3p, and miR-592) and three biomarkers (DENND5B, IGF1R, and MEF2C) were closely associated with TNBC. Significant differences in the functions of prognostic genes between the two risk groups were observed, encompassing adipogenesis, inflammatory response, and hormone metabolic process. The prognostic gene regulatory network revealed that miR200C-3p regulated ZFPM2 and CFL2, and miR-1277–3p regulated BMP2 and RORA. A nomogram was created based on riskScore, cancer status, and pathologic stage to predict 1/3/5-year survival of patients with TNBC. Immune infiltration analysis indicated that the immune microenvironment may be associated with the progression of TNBC. Interestingly, prognostic genes exhibited higher expression levels in T cells, fibroblasts, endothelial cells, and monocytes compared to other cells. Conclusions: Five prognostic miRNA (miR-203a-3p, miR-1277–3p, miR-135b-5p, miR-200c-3p, and miR-592) and three biomarkers (DENND5B, IGF1R, and MEF2C) were significantly associated with TNBC, it provides new therapeutic targets for the treatment and prognosis of TNBC.

Keywords