Aerospace (Sep 2024)

Impact of Pitch Angle Limitation on E-Sail Interplanetary Transfers

  • Alessandro A. Quarta

DOI
https://doi.org/10.3390/aerospace11090729
Journal volume & issue
Vol. 11, no. 9
p. 729

Abstract

Read online

The Electric Solar Wind Sail (E-sail) deflects charged particles from the solar wind through an artificial electric field to generate thrust in interplanetary space. The structure of a spacecraft equipped with a typical E-sail essentially consists in a number of long conducting tethers deployed from a main central body, which contains the classical spacecraft subsystems. During flight, the reference plane that formally contains the conducting tethers, i.e., the sail nominal plane, is inclined with respect to the direction of propagation of the solar wind (approximately coinciding with the Sun–spacecraft direction in a preliminary trajectory analysis) in such a way as to vary both the direction and the module of the thrust vector provided by the propellantless propulsion system. The generation of a sail pitch angle different from zero (i.e., a non-zero angle between the Sun–spacecraft line and the direction perpendicular to the sail nominal plane) allows a transverse component of the thrust vector to be obtained. From the perspective of attitude control system design, a small value of the sail pitch angle could improve the effectiveness of the E-sail attitude maneuver at the expense, however, of a worsening of the orbital transfer performance. The aim of this paper is to investigate the effects of a constraint on the maximum value of the sail pitch angle, on the performance of a spacecraft equipped with an E-sail propulsion system in a typical interplanetary mission scenario. During flight, the E-sail propulsion system is considered to be always on so that the entire transfer can be considered a single propelled arc. A heliocentric orbit-to-orbit transfer without ephemeris constraints is analyzed, while the performance analysis is conducted in a parametric form as a function of both the maximum admissible sail pitch angle and the propulsion system’s characteristic acceleration value.

Keywords