Atmospheric Measurement Techniques (Apr 2024)
Characterization of stratospheric particle size distribution uncertainties using SAGE II and SAGE III/ISS extinction spectra
Abstract
A new algorithm was developed to infer particle size distribution parameters from the Stratospheric Aerosol and Gas Experiment II (SAGE II) and SAGE III on the International Space Station (SAGE III/ISS) extinction spectra using a lookup table (LUT) approach. Here, the SAGE-based extinction ratios were matched to LUT values, and, using these matches, weighted statistics were calculated to infer the median particle size distribution values and higher-moment parameters as well as quantify the uncertainty in these estimates. This was carried out by solving for both single-mode and bimodal lognormal distributions. The work presented herein falls under two general headings: (1) a theoretical study was carried out to determine the accuracy of this methodology, and (2) the solution algorithm was applied to the SAGE II and SAGE III/ISS records with a brief case study analysis of the 2022 Hunga Tonga eruption. This methodology was demonstrated to be ≈ 25 % accurate for mode radius and has a minor dependence on particle composition. While bimodal solutions were obtained from this algorithm, we provide a conclusive demonstration of how and why these estimates are inherently unstable using SAGE III/ISS extinction spectra alone. Finally, we demonstrated how the Hunga Tonga aerosol plume evolved in regard to both size and transport over 18 months after the 2022 Hunga Tonga eruption. The particle size distribution (PSD) estimates, higher-moment parameters, and uncertainties are new products within the SAGE III/ISS Level 2 (L2) products, are currently available for download, and will be merged into the main SAGE III/ISS release products in a subsequent L2 release.