eLife (Feb 2019)

Connexin-43-dependent ATP release mediates macrophage activation during sepsis

  • Michel Dosch,
  • Joël Zindel,
  • Fadi Jebbawi,
  • Nicolas Melin,
  • Daniel Sanchez-Taltavull,
  • Deborah Stroka,
  • Daniel Candinas,
  • Guido Beldi

DOI
https://doi.org/10.7554/eLife.42670
Journal volume & issue
Vol. 8

Abstract

Read online

Bacterial spillage into a sterile environment following intestinal hollow-organ perforation leads to peritonitis and fulminant sepsis. Outcome of sepsis critically depends on macrophage activation by extracellular ATP-release and associated autocrine signalling via purinergic receptors. ATP-release mechanisms, however, are poorly understood. Here, we show that TLR-2 and −4 agonists trigger ATP-release via Connexin-43 hemichannels in macrophages leading to poor sepsis survival. In humans, Connexin-43 was upregulated on macrophages isolated from the peritoneal cavity in patients with peritonitis but not in healthy controls. Using a murine peritonitis/sepsis model, we identified increased Connexin-43 expression in peritoneal and hepatic macrophages. Conditional Lyz2cre/creGja1flox/flox mice were developed to specifically assess Connexin-43 impact in macrophages. Both macrophage-specific Connexin-43 deletion and pharmacological Connexin-43 blockade were associated with reduced cytokine secretion by macrophages in response to LPS and CLP, ultimately resulting in increased survival. In conclusion, inhibition of autocrine Connexin-43-dependent ATP signalling on macrophages improves sepsis outcome.

Keywords