Mathematics (May 2024)

Linear Generalized <i>n</i>-Derivations on <i>C</i><sup>∗</sup>-Algebras

  • Shakir Ali,
  • Amal S. Alali,
  • Vaishali Varshney

DOI
https://doi.org/10.3390/math12101558
Journal volume & issue
Vol. 12, no. 10
p. 1558

Abstract

Read online

Let n≥2 be a fixed integer and A be a C∗-algebra. A permuting n-linear map G:An→A is known to be symmetric generalized n-derivation if there exists a symmetric n-derivation D:An→A such that Gς1,ς2,…,ςiςi′,…,ςn=Gς1,ς2,…,ςi,…,ςnςi′+ςiD(ς1,ς2,…,ςi′,…,ςn) holds ∀ςi,ςi′∈A. In this paper, we investigate the structure of C∗-algebras involving generalized linear n-derivations. Moreover, we describe the forms of traces of linear n-derivations satisfying certain functional identity.

Keywords