Ecotoxicology and Environmental Safety (Oct 2024)

The effects of GCRV on various tissues of grass carp (Ctenopharyngodon idella) and identification of differential interferon-stimulating genes (ISGs) through muscle transcriptome analysis

  • Ziquan Yang,
  • Huimei Zhang,
  • Ziming Yuan,
  • Jie Chen,
  • Guodong Zheng,
  • Shuming Zou

Journal volume & issue
Vol. 284
p. 116956

Abstract

Read online

Grass carp hemorrhagic disease is caused by the grass carp reovirus (GCRV). The disease spreads rapidly and has a high fatality rate, which seriously affects grass carp culture. Moreover, the molecular mechanisms underlying grass carp hemorrhagic disease remain unclear. To decipher the effects of GCRV on grass carp tissues, resistant grass carp A (GA) and susceptible grass carp B (GB) were selected through GCRV treatment, and control grass carp C (GC) was also established. The gill, liver, and muscle tissues exhibited different onset symptoms under the influence of GCRV by histological observation. We selected muscle samples with significant differences in symptoms for Illumina RNA sequencing. Analyses using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes revealed 3512, 3074, and 1853 differentially expressed genes between ''GC vs. GB,'' ''GC vs. GA,'' and ''GA vs. GB,'' respectively. Additionally, 40 differential immune-related genes and 28 differential interferon-stimulating genes (ISGs) related to the interferon (IFN) pathway were identified. The expression of immunogene-related genes of GB and GA, such as MDA5, IL-34, NF-KB, TRIM25, SOCS3, CEBPB, and BCL2, and genes associated with the JAK-STAT signaling pathway, such as IRF4, STAT1, STAT3, JAK 1, and JAK 2, was significantly upregulated. The IFN and JAK-STAT signaling pathways were closely related to anti-GCRV infection. The transcriptome data and predicted immune genes and ISGs in this study provide novel insights into the treatment of GCRV.

Keywords