Shock and Vibration (Jan 2021)
Rotating Machinery Remaining Useful Life Prediction Scheme Using Deep-Learning-Based Health Indicator and a New RVM
Abstract
Remaining useful life (RUL) prediction plays a significant role in developing the condition-based maintenance and improving the reliability and safety of machines. This paper proposes a remaining useful life prediction scheme combining deep-learning-based health indicator and a new relevance vector machine. First, both one-dimensional time-series information and two-dimensional time-frequency maps are input into a hybrid deep-learning structure network consisting of convolutional neural network (CNN) and long short-term memory network (LSTM) to construct health indicator (HI). Then, the prediction results and confidence interval are calculated by a new RVM enhanced by a polynomial regression model. The proposed method is verified by the public PRONOSTIA bearing datasets. Experimental results demonstrate the effectiveness of the proposed method in improving the prediction accuracy and analyzing the prediction uncertainty.