Communications Biology (Apr 2025)
Evidence for a push-pull interaction between superior colliculi in monocular dynamic vision mode
Abstract
Abstract Visual perception can operate in two distinct vision modes—static and dynamic—that have been associated with different neural activity regimes in the superior colliculus (SC). However, the associated pathway-wide mechanisms remain poorly understood, especially in terms of corticotectal and tectotectal feedback upon encoding the continuity illusion during the dynamic vision mode. Here, we harness functional MRI combined with rat brain lesions to investigate whole-pathway neural interactions in the dynamic vision mode. We find a push-pull mechanism embodying contralateral suppression of SC activity opposing positive ipsilateral neural activation upon monocular visual stimulation. Cortical amplification is confirmed through cortical lesions, while further lesioning the ipsilateral SC leads to a boost in the contralateral SC negative signals, suggesting a tectal origin for the push-pull interaction. These results highlight hitherto unreported frequency-dependent modulations in the tectotectal pathway and further challenge the notion that intertectal connections solely serve as reciprocal inhibitory mechanisms for avoiding visual blur during saccades.