Journal of Function Spaces (Jan 2018)

Integration in Orlicz-Bochner Spaces

  • Marian Nowak

DOI
https://doi.org/10.1155/2018/9380350
Journal volume & issue
Vol. 2018

Abstract

Read online

Let (Ω,Σ,μ) be a complete σ-finite measure space, φ be a Young function, and X and Y be Banach spaces. Let Lφ(X) denote the Orlicz-Bochner space, and Tφ∧ denote the finest Lebesgue topology on Lφ(X). We study the problem of integral representation of (Tφ∧,·Y)-continuous linear operators T:Lφ(X)→Y with respect to the representing operator-valued measures. The relationships between (Tφ∧,·Y)-continuous linear operators T:Lφ(X)→Y and the topological properties of their representing operator measures are established.