Systems (Oct 2024)
Integrated Scheduling of Handling Equipment in Automated Container Terminal Considering Quay Crane Faults
Abstract
Quay cranes (QCs) play a vital role in automated container terminals (ACTs), and once a QC malfunctions, it will seriously affect the operation efficiency of ships being loaded and unloaded by the QC. In this study, we investigate an integrated scheduling problem of quay cranes (QCs), yard cranes (YCs), and automated guided vehicles (AGVs) under QC faults, which is aimed at minimizing the loading and unloading time by determining the range of adjacent operational QCs of the faulty QCs and reallocating unfinished container handling tasks of QCs. A mixed integer programming model is formulated to dispatch QCs, YCs, and AGVs in ACTs. To solve the model, an adaptive two-stage NSGA-II algorithm is proposed. Numerical experiments show that the proposed algorithm can significantly reduce the impact of faulty QCs on productivity while maintaining its synchronous loading and unloading efficiency. The sensitivity analysis of ship scale, location, and number of faulty QCs indicates that the number of faulty QCs has a greater influence on the loading and unloading efficiency than their locations, and the impact of faulty QCs on the efficiency of small-scale ships is greater than that of large-scale ships.
Keywords