Journal of Ovarian Research (Feb 2024)
Aneuploid serves as a prognostic marker and favors immunosuppressive microenvironment in ovarian cancer
Abstract
Abstract Ovarian cancer is the most lethal gynecologic neoplasm, and most patients experience recurrence and chemoresistance. Even the promising immunotherapy showed limited efficacy in ovarian cancer, probably due to the immunosuppressive microenvironment. However, the behind mechanisms of the immune exclusion or cold phenotype in ovarian cancer still remain to be explored. As a cancer dominated by copy number variations instead of mutations, ovarian cancer contains a high fraction of aneuploid, which might correlate with immune inhibition. Nevertheless, whether or how aneuploid affects ovarian cancer is still unclear. For exploring the role of aneuploid cancer cells and the potential ploidy-immune relationship, herein, the ploidy information was first comprehensively analyzed combining the karyotype data and copy number variation data obtained from Mitelman and cBioPortal databases, respectively. Ovarian cancer showed strong ploidy heterogeneity, with high fraction of aneuploid and recurrent arm-level and whole chromosome changes. Furthermore, clinical parameters were compared between the highly-aneuploid and the near-diploid ovarian cancers. Aneuploid indicated high grade, poor overall survival and poor disease-free survival in ovarian cancer. To understand the biofunction affected by aneuploid, the differentially expressed genes between the highly-aneuploid and the near-diploid groups were analyzed. Transcription data suggested that aneuploid cancer correlated with deregulated MHC expression, abnormal antigen presentation, and less infiltration of macrophages and activated T cells and higher level of T cell exclusion. Furthermore, the ploidy-MHC association was verified using the Human Protein Atlas database. All these data supported that aneuploid might be promising for cancer management and immune surveillance in ovarian cancer.
Keywords