Biology Open (Jul 2018)

Extending chemical perturbations of the ubiquitin fitness landscape in a classroom setting reveals new constraints on sequence tolerance

  • David Mavor,
  • Kyle A. Barlow,
  • Daniel Asarnow,
  • Yuliya Birman,
  • Derek Britain,
  • Weilin Chen,
  • Evan M. Green,
  • Lillian R. Kenner,
  • Bruk Mensa,
  • Leanna S. Morinishi,
  • Charlotte A. Nelson,
  • Erin M. Poss,
  • Pooja Suresh,
  • Ruilin Tian,
  • Taylor Arhar,
  • Beatrice E. Ary,
  • David P. Bauer,
  • Ian D. Bergman,
  • Rachel M. Brunetti,
  • Cynthia M. Chio,
  • Shizhong A. Dai,
  • Miles S. Dickinson,
  • Susanna K. Elledge,
  • Cole V. M. Helsell,
  • Nathan L. Hendel,
  • Emily Kang,
  • Nadja Kern,
  • Matvei S. Khoroshkin,
  • Lisa L. Kirkemo,
  • Greyson R. Lewis,
  • Kevin Lou,
  • Wesley M. Marin,
  • Alison M. Maxwell,
  • Peter F. McTigue,
  • Douglas Myers-Turnbull,
  • Tamas L. Nagy,
  • Andrew M. Natale,
  • Keely Oltion,
  • Sergei Pourmal,
  • Gabriel K. Reder,
  • Nicholas J. Rettko,
  • Peter J. Rohweder,
  • Daniel M. C Schwarz,
  • Sophia K. Tan,
  • Paul V. Thomas,
  • Ryan W. Tibble,
  • Jason P. Town,
  • Mary K. Tsai,
  • Fatima S. Ugur,
  • Douglas R. Wassarman,
  • Alexander M. Wolff,
  • Taia S. Wu,
  • Derek Bogdanoff,
  • Jennifer Li,
  • Kurt S. Thorn,
  • Shane O'Conchúir,
  • Danielle L. Swaney,
  • Eric D. Chow,
  • Hiten D. Madhani,
  • Sy Redding,
  • Daniel N. Bolon,
  • Tanja Kortemme,
  • Joseph L. DeRisi,
  • Martin Kampmann,
  • James S. Fraser

DOI
https://doi.org/10.1242/bio.036103
Journal volume & issue
Vol. 7, no. 7

Abstract

Read online

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

Keywords