Системи обробки інформації (Jun 2020)
Планування експерименту при розв’язанні оберненої задачі побудови толерантних (референсних) інтервалів
Abstract
Поставлено і розв’язано для деяких окремих випадків, важливих в практичній діяльності, обернену задачу побудови толерантних інтервалів. Розв’язок отримано для планування експерименту в непараметричному випадку, а також для рівномірного розподілу, показникового розподілу, розподілу Вейбулла, нормального розподілу, логарифмічно нормального розподілу. Запропоновано чисельні методи розв’язання поставлених задач, доступних для найбільш поширених програмних продуктів. Прямою задачею побудови толерантних інтервалів в параметричному випадку названо задачу, в якій при заданому об'ємі вибірки, відомому закону розподілу і його параметрів, визначених за вибірковими даними, заданому рівні довіри (статистичній надійності) необхідно визначити межі можливих значень випадкової величини, в яких може знаходитися задана частка вибірки. За відсутності відомостей про вид закону розподілу вибірки розглянуто розв’язок задачі в непараметричному випадку. При виконанні розрахунків чисельних прикладів прийнято наступні умови. Для частки генеральної сукупності прийнято стандартні умови: 0,75; 0,90; 0,95; 0,99; для заданої статистичної надійності прийнято значення: 0,90; 0,95; 0,99. Прийнято, що вибірка містить не менш ніж 30 спостережень. Обмеження на об'єм вибірки обумовлені тим, що, по-перше, при меншому об'ємі вибірки необхідне створення спеціалізованих програмних продуктів, по-друге, обробка даних, отриманих по вибірках меншого об’єму, не завжди має змістовний сенс. При розв’язанні задачі в непараметричному випадку отримано таблицю, яка дозволяє обрати розв’язок поставленої задачі для заданих умов. Показано, що вибірки більше, ніж 300 спостережень не дають істотних змін у розв’язку задачі. Для всіх перерахованих розподілів визначені, для нижнього і верхнього значень меж толерантних інтервалів, об'єми вибірок, що забезпечують необхідні ймовірнісні характеристики: частку вибірки в генеральній сукупності і її статистичну надійність. Для нормального розподілу поставлена задача вирішена для варіанту двостороннього толерантного інтервалу.
Keywords