ESPOCH Congresses (Aug 2021)

Design and Implementation of the Electric Propulsion Train of a Prototype for the Eco Shell Marathon Competition

  • J. Pancha,
  • J. Néjer,
  • V. Romero,
  • J. Morocho

DOI
https://doi.org/10.18502/espoch.v1i1.9561
Journal volume & issue
Vol. 1, no. 1
pp. 267 – 282

Abstract

Read online

Abstract The main objective of this thesis project focused on designing and implementing an electric propulsion train for a vehicle prototype and subsequently achieving an adequate driving technique, where man and machine come together to achieve an efficient participation in the Eco Shell Marathon competition. In this context, the methodology sought to identify needs such as: equipment and driving strategies. Therefore, for the equipment selection, the technique of the ordinal method corrected of weighted criteria was applied, resulting in: a Brushed Speed WPHMOTO 48v 1000w motor with a score of percent; A TDPRO YK31C Accelerator Driver with a 40 percent priority, and Turnigy Graphene Panther Batteries (6000mAh, 6S 75C Lipo with XT90) with a 44 percent priority, from three possible options for each of them. After the equipment implementation, experimental trials of four types of practices were carried out. In the analysis of the results when contrasting the first two practices carried out on the sloping track zero degrees, it is revealed that in Test 01 the vehicle travels 35.056 km per kW.h, while in Test 02 the distance is 37.466 km per each kW.h. In the case of Test 03 and 04 performed on the track with an inclination of two degrees, the coefficients of the relationship between distance traveled and energy consumed are: 34.29 km/kWh and 42.219 km/kW.h respectively. Therefore, the relationship between the distance traveled and energy consumed present favorable data when applying the driving strategy based on giving impulses through the accelerator as the speed of the two types of tracks decreases.

Keywords