Journal of Aeronautical Materials (Jan 2019)

Effect of composition on microstructure and mechanical properties of TA15 titanium alloy

  • SUI Nan,
  • CAO Jingxia,
  • HUANG Xu,
  • GAO Fan,
  • TAN Qiming

DOI
https://doi.org/10.11868/j.issn.1005-5053.2018.000098
Journal volume & issue
Vol. 39, no. 1
pp. 48 – 54

Abstract

Read online

To analyze the relationship between composition, microstructure and mechanical properties of TA15 titanium alloys, the quasi-static tensile properties and dynamic properties at room temperature of four kinds of TA15 titanium alloys were studied by the electronic universal tensile testing machine and split hopkinson pressure bar (SHPB). The results reveal that the Zr content has little effect on the tensile strength at room temperature, moreover, with the increase of content of main alloy elements Al, V and Mo, the content of primary α phase decreases and the lamella width of secondary α phase is thinner which provide higher strength and lower plasticity. Slight changes in alloy composition have little effect on dynamic mechanical properties within the critical strain rate range. Increasing the content of main alloy elements Al, Zr, V and Mo is beneficial to improve the critical strain rate, at which the alloy has excellent dynamic mechanical properties. For equiaxed TA15 titanium alloys obtained under air cooling condition, the smaller volume fraction of primary α phase and thinner lamella of secondary α phase can improve the tensile strength, critical strain rate and dynamic mechanical properties at room temperature.

Keywords