Frontiers in Sustainable Food Systems (Dec 2020)
Savannah Phenological Dynamics Reveal Spatio-Temporal Landscape Heterogeneity in Karamoja Sub-region, Uganda
Abstract
Phenological properties are critical in understanding global environmental change patterns. This study analyzed phenological dynamics in a savannah dominated semi-arid environment of Uganda. We used moderate-resolution imaging spectroradiometer normalized difference vegetation index (MODIS NDVI) imagery. TIMESAT program was used to analyse the imagery to determine key phenological metrics; onset of greenness (OGT), onset of greenness value, end of greenness time (EGT), end of greenness value, maximum NDVI, time of maximum NDVI, duration of greenup (DOG) and range of normalized difference vegetation index (RNDVI). Results showed that thicket and shrubs had the earliest OGT on day 85 ± 14, EGT on day 244 ± 32 and a DOG of 158 ± 25 days. Woodland had the highest NDVI value for maximum NDVI, OGT, EGT, and RNDVI. In the bushland, OGT occurs on average around day 90 ± 11, EGT on day 255 ± 33 with a DOG of 163 ± 36 days. The grassland showed that OGT occurs on day 96 ± 13, EGT on day 252 ± 36 with a total DOG of 156 ± 33 days. Early photosynthesis activity was observed in central to eastern Karamoja in the districts of Moroto and Kotido. There was a positive relationship between rainfall and NDVI across all vegetation cover types as well as between phenological parameters and season dynamics. Vegetation senescence in the sub-region occurs around August to mid-September (day 244–253). The varied phenophases observed in the sub-region reveal an inherent landscape heterogeneity that is beneficial to extensive pastoral livestock production. Continuous monitoring of savannah phenological patterns in the sub-region is required to decipher landscape ecosystem processes and functioning.
Keywords