Progress in Earth and Planetary Science (Apr 2024)
Distribution of eukaryotic environmental DNA in global subseafloor sediments
Abstract
Abstract The analysis of eukaryotic environmental DNA (eDNA) in sediment has the potential for understanding past ecosystems, even for taxa lacking skeletons or preserved only as a part of necromass. Despite the paleoenvironmental and ecological importance of eukaryotic eDNA in marine sediment, the duration of remaining eDNA and the species of eDNA present in marine sediment has not been well investigated. Here, we analyzed eDNA extracted from 299 sediment samples down to 678 m below the seafloor at 40 geologically distinct sites. The results showed that eukaryotic eDNA was amplified from more than 80% of the sediments with a depositional age of less than 100,000 years. The eDNA was well conserved in anoxic sediments than in oxic sediments, with PCR success rates of 48% and 18%, respectively. The eukaryotic communities include non-benthic organisms such as marine plankton, including diatoms, dinoflagellates, and coccolithophores. A freshwater diatom genus Aulacoseira was detected in the Baltic Sea sediments from the last glacial lacustrine environment. These results provide new insights into the global-scale distribution of the past eukaryotic eDNA preserved in marine sediment.
Keywords