PLoS ONE (Jan 2021)

Genotypic diversity of multi- and pre-extremely drug-resistant Mycobacterium tuberculosis isolates from Morocco.

  • Amal Oudghiri,
  • Ghizlane Momen,
  • Achraf Aainouss,
  • Amin Laglaoui,
  • My Driss El Messaoudi,
  • Mohammed El Mzibri,
  • Imane Chaoui

DOI
https://doi.org/10.1371/journal.pone.0253826
Journal volume & issue
Vol. 16, no. 7
p. e0253826

Abstract

Read online

In Morocco, the prevalence of multidrug resistant tuberculosis (MDR-TB) continues to increase especially within previously treated cases; these MDR cases may evolve to extensively drug resistant tuberculosis (XDR-TB) raising major concern to TB control programs. From an epidemiological window, scarce informations are available about the genetic diversity of Mycobacterium tuberculosis (MTB) strains fueling these forms of resistance. The aim of this study was to assess to genetic diversity of MDR-MTB strains. Hence, this prospective study was conducted on patients diagnosed with MDR-TB at Pasteur Institute of Casablanca from 2010 to 2013. A total of 70 MDR-MTB isolates were genotyped by spoligotyping and 15-loci MIRU-VNTR methods. Spoligotyping generated four orphan patterns, five unique profiles whereas 61 strains were grouped in nine clusters (2 to 25 strains per cluster), the clustering rates being 87.1%. Subtyping by 15 loci MIRU-VNTR splitted all clusters already established by spoligotyping and generated 70 unique profiles not recognized in SITVIT2 database; clustering rate was equal to zero. HGDI analysis of 15 loci MIRU demonstrated that eight out of 15 loci were highly discriminant. Of note, all pre-XDR strains belongs to many clades, meaning that there no association between gyrA mutants and particular clade. Overall, the data generated by this study (i) describe the population structure of MDR MTBC in Morocco which is highly homogenous, (ii) confirm that TB in Morocco is almost exclusively transmitted by modern and evolutionary lineages with high level of biodiversity seen by MIRU, and (iii) validate the use of optimized 15-loci MIRU-VNTR format for future investigations in Morocco.