European Physical Journal C: Particles and Fields (Dec 2019)
High-resolution and low-background $$^{163}$$ 163 Ho spectrum: interpretation of the resonance tails
- C. Velte,
- F. Ahrens,
- A. Barth,
- K. Blaum,
- M. Braß,
- M. Door,
- H. Dorrer,
- Ch. E. Düllmann,
- S. Eliseev,
- C. Enss,
- P. Filianin,
- A. Fleischmann,
- L. Gastaldo,
- A. Goeggelmann,
- T. Day Goodacre,
- M. W. Haverkort,
- D. Hengstler,
- J. Jochum,
- K. Johnston,
- M. Keller,
- S. Kempf,
- T. Kieck,
- C. M. König,
- U. Köster,
- K. Kromer,
- F. Mantegazzini,
- B. Marsh,
- Yu. N. Novikov,
- F. Piquemal,
- C. Riccio,
- D. Richter,
- A. Rischka,
- S. Rothe,
- R. X. Schüssler,
- Ch. Schweiger,
- T. Stora,
- M. Wegner,
- K. Wendt,
- M. Zampaolo,
- K. Zuber
Affiliations
- C. Velte
- Kirchhoff-Institute for Physics, Heidelberg University
- F. Ahrens
- Kirchhoff-Institute for Physics, Heidelberg University
- A. Barth
- Kirchhoff-Institute for Physics, Heidelberg University
- K. Blaum
- Max-Planck-Institut für Kernphysik
- M. Braß
- Institute for Theoretical Physics, Heidelberg University
- M. Door
- Max-Planck-Institut für Kernphysik
- H. Dorrer
- Institute of Nuclear Chemistry, Johannes Gutenberg University
- Ch. E. Düllmann
- Institute of Nuclear Chemistry, Johannes Gutenberg University
- S. Eliseev
- Max-Planck-Institut für Kernphysik
- C. Enss
- Kirchhoff-Institute for Physics, Heidelberg University
- P. Filianin
- Max-Planck-Institut für Kernphysik
- A. Fleischmann
- Kirchhoff-Institute for Physics, Heidelberg University
- L. Gastaldo
- Kirchhoff-Institute for Physics, Heidelberg University
- A. Goeggelmann
- Physics Institute, University of Tübingen
- T. Day Goodacre
- Physics Department, CERN
- M. W. Haverkort
- Institute for Theoretical Physics, Heidelberg University
- D. Hengstler
- Kirchhoff-Institute for Physics, Heidelberg University
- J. Jochum
- Physics Institute, University of Tübingen
- K. Johnston
- Physics Department, CERN
- M. Keller
- Kirchhoff-Institute for Physics, Heidelberg University
- S. Kempf
- Kirchhoff-Institute for Physics, Heidelberg University
- T. Kieck
- Institute of Nuclear Chemistry, Johannes Gutenberg University
- C. M. König
- Max-Planck-Institut für Kernphysik
- U. Köster
- Institut Laue-Langevin
- K. Kromer
- Max-Planck-Institut für Kernphysik
- F. Mantegazzini
- Kirchhoff-Institute for Physics, Heidelberg University
- B. Marsh
- Physics Department, CERN
- Yu. N. Novikov
- Petersburg Nuclear Physics Institute
- F. Piquemal
- Max-Planck-Institut für Kernphysik
- C. Riccio
- Laboratoire Souterrain de Modane
- D. Richter
- Kirchhoff-Institute for Physics, Heidelberg University
- A. Rischka
- Max-Planck-Institut für Kernphysik
- S. Rothe
- Physics Department, CERN
- R. X. Schüssler
- Max-Planck-Institut für Kernphysik
- Ch. Schweiger
- Max-Planck-Institut für Kernphysik
- T. Stora
- Physics Department, CERN
- M. Wegner
- Kirchhoff-Institute for Physics, Heidelberg University
- K. Wendt
- Institute of Physics, Johannes Gutenberg University
- M. Zampaolo
- Laboratoire Souterrain de Modane
- K. Zuber
- Institute of Nuclear and Particle Physics, Dresden University
- DOI
- https://doi.org/10.1140/epjc/s10052-019-7513-x
- Journal volume & issue
-
Vol. 79,
no. 12
pp. 1 – 8
Abstract
Abstract The determination of the effective electron neutrino mass via kinematic analysis of beta and electron capture spectra is considered to be model-independent since it relies on energy and momentum conservation. At the same time the precise description of the expected spectrum goes beyond the simple phase space term. In particular for electron capture processes, many-body electron-electron interactions lead to additional structures besides the main resonances in calorimetrically measured spectra. A precise description of the $$^{163}$$ 163 Ho spectrum is fundamental for understanding the impact of low intensity structures at the endpoint region where a finite neutrino mass affects the shape most strongly. We present a low-background and high-energy resolution measurement of the $$^{163}$$ 163 Ho spectrum obtained in the framework of the ECHo experiment. We study the line shape of the main resonances and multiplets with intensities spanning three orders of magnitude. We discuss the need to introduce an asymmetric line shape contribution due to Auger–Meitner decay of states above the auto-ionisation threshold. With this we determine an enhancement of count rate at the endpoint region of about a factor of 2, which in turn leads to an equal reduction in the required exposure of the experiment to achieve a given sensitivity on the effective electron neutrino mass.