Pluripotent Stem Cells as a Model for Human Embryogenesis
Daniela Ávila-González,
Mikel Ángel Gidi-Grenat,
Guadalupe García-López,
Alejandro Martínez-Juárez,
Anayansi Molina-Hernández,
Wendy Portillo,
Néstor Emmanuel Díaz-Martínez,
Néstor Fabián Díaz
Affiliations
Daniela Ávila-González
Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
Mikel Ángel Gidi-Grenat
Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
Guadalupe García-López
Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
Alejandro Martínez-Juárez
Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
Anayansi Molina-Hernández
Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
Wendy Portillo
Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
Néstor Emmanuel Díaz-Martínez
Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
Néstor Fabián Díaz
Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
Pluripotent stem cells (PSCs; embryonic stem cells and induced pluripotent stem cells) can recapitulate critical aspects of the early stages of embryonic development; therefore, they became a powerful tool for the in vitro study of molecular mechanisms that underlie blastocyst formation, implantation, the spectrum of pluripotency and the beginning of gastrulation, among other processes. Traditionally, PSCs were studied in 2D cultures or monolayers, without considering the spatial organization of a developing embryo. However, recent research demonstrated that PSCs can form 3D structures that simulate the blastocyst and gastrula stages and other events, such as amniotic cavity formation or somitogenesis. This breakthrough provides an unparalleled opportunity to study human embryogenesis by examining the interactions, cytoarchitecture and spatial organization among multiple cell lineages, which have long remained a mystery due to the limitations of studying in utero human embryos. In this review, we will provide an overview of how experimental embryology currently utilizes models such as blastoids, gastruloids and other 3D aggregates derived from PSCs to advance our understanding of the intricate processes involved in human embryo development.