Atmospheric Chemistry and Physics (Feb 2018)
Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
- J. Schmale,
- S. Henning,
- S. Decesari,
- B. Henzing,
- H. Keskinen,
- H. Keskinen,
- K. Sellegri,
- J. Ovadnevaite,
- M. L. Pöhlker,
- J. Brito,
- J. Brito,
- A. Bougiatioti,
- A. Kristensson,
- N. Kalivitis,
- I. Stavroulas,
- S. Carbone,
- A. Jefferson,
- M. Park,
- P. Schlag,
- P. Schlag,
- Y. Iwamoto,
- Y. Iwamoto,
- P. Aalto,
- M. Äijälä,
- N. Bukowiecki,
- M. Ehn,
- G. Frank,
- R. Fröhlich,
- A. Frumau,
- E. Herrmann,
- H. Herrmann,
- R. Holzinger,
- G. Kos,
- M. Kulmala,
- N. Mihalopoulos,
- N. Mihalopoulos,
- A. Nenes,
- A. Nenes,
- A. Nenes,
- C. O'Dowd,
- T. Petäjä,
- D. Picard,
- C. Pöhlker,
- U. Pöschl,
- L. Poulain,
- A. S. H. Prévôt,
- E. Swietlicki,
- M. O. Andreae,
- P. Artaxo,
- A. Wiedensohler,
- J. Ogren,
- A. Matsuki,
- S. S. Yum,
- F. Stratmann,
- U. Baltensperger,
- M. Gysel
Affiliations
- J. Schmale
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- S. Henning
- Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
- S. Decesari
- Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Piero Gobetti, 101, 40129 Bologna, Italy
- B. Henzing
- Netherlands Organisation for Applied Scientific Research, Princetonlaan 6, 3584 Utrecht, the Netherlands
- H. Keskinen
- Faculty of Science, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, Finland
- H. Keskinen
- Hyytiälä Forestry Field Station, Hyytiäläntie 124, Korkeakoski, Finland
- K. Sellegri
- Laboratory for Meteorological Physics (LaMP), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- J. Ovadnevaite
- School of Physics and CCAPS, National University of Ireland Galway, University Road, Galway, Ireland
- M. L. Pöhlker
- Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
- J. Brito
- Laboratory for Meteorological Physics (LaMP), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- J. Brito
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP, Brazil
- A. Bougiatioti
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
- A. Kristensson
- Department of Physics, Lund University, 221 00 Lund, Sweden
- N. Kalivitis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
- I. Stavroulas
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
- S. Carbone
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP, Brazil
- A. Jefferson
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, CO 80305, USA
- M. Park
- Department of Atmospheric Science, Yonsei University, Seoul, South Korea
- P. Schlag
- Institute for Marine and Atmospheric Research, University of Utrecht, Utrecht, the Netherlands
- P. Schlag
- Institute for Energy and Climate Research (IEK-8): Troposphere, Forschungszentrum Jülich, Jülich, Germany
- Y. Iwamoto
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Y. Iwamoto
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima 739-8528, Japan
- P. Aalto
- Faculty of Science, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, Finland
- M. Äijälä
- Faculty of Science, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, Finland
- N. Bukowiecki
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- M. Ehn
- Faculty of Science, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, Finland
- G. Frank
- Department of Physics, Lund University, 221 00 Lund, Sweden
- R. Fröhlich
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- A. Frumau
- Energy Research Centre of the Netherlands, Petten, the Netherlands
- E. Herrmann
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- H. Herrmann
- Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
- R. Holzinger
- Institute for Marine and Atmospheric Research, University of Utrecht, Utrecht, the Netherlands
- G. Kos
- Energy Research Centre of the Netherlands, Petten, the Netherlands
- M. Kulmala
- Faculty of Science, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, Finland
- N. Mihalopoulos
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
- N. Mihalopoulos
- National Observatory of Athens, P. Penteli 15236, Athens, Greece
- A. Nenes
- National Observatory of Athens, P. Penteli 15236, Athens, Greece
- A. Nenes
- School of Chemical & Biomolecular Engineering and School of Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0340, USA
- A. Nenes
- Foundation for Research and Technology – Hellas, Patras, 26504, Greece
- C. O'Dowd
- School of Physics and CCAPS, National University of Ireland Galway, University Road, Galway, Ireland
- T. Petäjä
- Faculty of Science, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, Finland
- D. Picard
- Laboratory for Meteorological Physics (LaMP), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- C. Pöhlker
- Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
- U. Pöschl
- Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
- L. Poulain
- Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
- A. S. H. Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- E. Swietlicki
- Department of Physics, Lund University, 221 00 Lund, Sweden
- M. O. Andreae
- Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
- P. Artaxo
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP, Brazil
- A. Wiedensohler
- Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
- J. Ogren
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, CO 80305, USA
- A. Matsuki
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- S. S. Yum
- Department of Atmospheric Science, Yonsei University, Seoul, South Korea
- F. Stratmann
- Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
- U. Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- M. Gysel
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- DOI
- https://doi.org/10.5194/acp-18-2853-2018
- Journal volume & issue
-
Vol. 18
pp. 2853 – 2881
Abstract
Aerosol–cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set – ready to be used for model validation – of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles > 20 nm) across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, κ, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2–0.3). We performed closure studies based on κ–Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of κ. The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.