Remote Sensing (Dec 2015)

A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles

  • Ju Hyoung Lee,
  • Jungho Im

DOI
https://doi.org/10.3390/rs71215824
Journal volume & issue
Vol. 7, no. 12
pp. 16045 – 16061

Abstract

Read online

Bias correction is a very important pre-processing step in satellite data assimilation analysis, as data assimilation itself cannot circumvent satellite biases. We introduce a retrieval algorithm-specific and spatially heterogeneous Instantaneous Field of View (IFOV) bias correction method for Soil Moisture and Ocean Salinity (SMOS) soil moisture. To the best of our knowledge, this is the first paper to present the probabilistic presentation of SMOS soil moisture using retrieval ensembles. We illustrate that retrieval ensembles effectively mitigated the overestimation problem of SMOS soil moisture arising from brightness temperature errors over West Africa in a computationally efficient way (ensemble size: 12, no time-integration). In contrast, the existing method of Cumulative Distribution Function (CDF) matching considerably increased the SMOS biases, due to the limitations of relying on the imperfect reference data. From the validation at two semi-arid sites, Benin (moderately wet and vegetated area) and Niger (dry and sandy bare soils), it was shown that the SMOS errors arising from rain and vegetation attenuation were appropriately corrected by ensemble approaches. In Benin, the Root Mean Square Errors (RMSEs) decreased from 0.1248 m3/m3 for CDF matching to 0.0678 m3/m3 for the proposed ensemble approach. In Niger, the RMSEs decreased from 0.14 m3/m3 for CDF matching to 0.045 m3/m3 for the ensemble approach.

Keywords