Drug Delivery (Dec 2023)

Optimization of hyaluronan-enriched cubosomes for bromfenac delivery enhancing corneal permeation: characterization, ex vivo, and in vivo evaluation

  • Nabil A. Shoman,
  • Rana M. Gebreel,
  • Mohamed A. El-Nabarawi,
  • Alshaimaa Attia

DOI
https://doi.org/10.1080/10717544.2022.2162162
Journal volume & issue
Vol. 30, no. 1

Abstract

Read online

AbstractTo design and evaluate hyaluronan-based cubosomes loaded with bromfenac sodium (BS) for ocular application to enhance the corneal permeation and retention in pterygium and cataract treatment. BS-loaded cubosomes were prepared by the emulsification method, employing 23 full factorial design using Design-Expert® software. Glycerol monoolein (GMO) and poloxamer 407 (P407) as lipid phase and polyvinyl alcohol (PVA) as stabilizer were the used ingredients. The optimized formulation (OBC; containing GMO (7% w/w), P407 (0.7% w/w) and PVA (2.5% w/w)) was further evaluated. OBC had an entrapment efficiency of 61.66 ± 1.01%, a zeta potential of −30.80 ± 0.61 mV, a mean particle size of 149.30 ± 15.24 nm and a polydispersity index of 0.21 ± 0.02. Transmission electron microscopy confirmed its cubic shape and excellent dispersibility. OBC exhibited high stability and no ocular irritation that was ensured by histopathology. Ex vivo permeation study showed a significant increase in drug deposition and permeability parameters through goat cornea, besides, confocal laser microscopy established the superior permeation capability of OBC, as compared to drug solution. In vivo pharmacokinetics in aqueous humor indicated higher AUC0-tlast (18.88 µg.h/mL) and mean residence time (3.16 h) of OBC when compared to the marketed eye drops (7.93 µg.h/mL and 1.97 h, respectively). Accordingly, hyaluronan-enriched cubosomes can be regarded as a promising carrier for safe and effective topical ocular delivery.

Keywords