Modulation effects of low-intensity transcranial ultrasound stimulation on the neuronal firing activity and synaptic plasticity of mice
Zhe Zhao,
Hui Ji,
Cong Zhang,
Jiamin Pei,
Xiangjian Zhang,
Yi Yuan
Affiliations
Zhe Zhao
School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
Hui Ji
Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
Cong Zhang
Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
Jiamin Pei
School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
Xiangjian Zhang
Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Corresponding author.
Yi Yuan
School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China; Corresponding author at: School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.
Low-intensity transcranial ultrasound stimulation (TUS) has been effective in modulating several neurological and psychiatric disorders. However, how TUS modulates neuronal firing activity and synaptic plasticity remains unclear. Thus, we behaviorally tested the whisker-dependent novel object discrimination ability in mice after ultrasound stimulation and examined the cortical neuronal firing activity and synaptic plasticity in awake mice after ultrasound stimulation by two-photon fluorescence imaging. The current study presented the following results: (1) TUS could significantly improve the whisker-dependent new object discrimination ability of mice, suggesting that their learning and memory abilities were significantly enhanced; (2) TUS significantly enhanced neuronal firing activity; and (3) TUS increased the growth rate of dendritic spines in the barrel cortex, but did not promote the extinction of dendritic spines, resulting in enhanced synaptic plasticity. The above results indicate that TUS can improve the learning and memory ability of mice and enhance the neuronal firing activity and synaptic plasticity that are closely related to it. This study provides a research basis for the application of ultrasound stimulation in the treatment of learning- and memory-related diseases.