Abstract Artificial biomaterials with dynamic mechano-responsive behaviors similar to those of biological tissues have been drawing great attention. In this study, we report a TiO2-based nanowire (TiO2NWs) scaffolds, which exhibit dynamic mechano-responsive behaviors varying with the number and amplitude of nano-deformation cycles. It is found that the elastic and adhesive forces in the TiO2NWs scaffolds can increase significantly after multiple cycles of nano-deformation. Further nanofriction experiments show the triboelectric effect of increasing elastic and adhesive forces during the nano-deformation cycles of TiO2NWs scaffolds. These properties allow the TiO2NW scaffolds to be designed and applied as intelligent artificial biomaterials to simulate biological tissues in the future.