BMC Public Health (Jan 2023)
Differences in county-level cardiovascular disease mortality rates due to damage caused by hurricane Matthew and the moderating effect of social capital: a natural experiment
Abstract
Abstract Background As the climate continues to warm, hurricanes will continue to increase in both severity and frequency. Hurricane damage is associated with cardiovascular events, but social capital may moderate this relationship. Social capital is a multidimensional concept with a rich theoretical tradition. Simply put, social capital refers to the social relationships and structures that provide individuals with material, financial, and emotional resources throughout their lives. Previous research has found an association between high levels of social capital and lower rates of cardiovascular (CVD) mortality. In post-disaster settings, social capital may protect against CVD mortality by improving access to life-saving resources. We examined the association between county-level hurricane damage and CVD mortality rates after Hurricane Matthew, and the moderating effect of several aspects of social capital and hurricane damage on this relationship. We hypothesized that (1) higher (vs. lower) levels of hurricane damage would be associated with increased CVD mortality rates and (2) in highly damaged counties, higher (vs. lower) levels of social capital would be associated with lower CVD mortality. Methods Analysis used yearly (2013-2018) county-level sociodemographic and epidemiological data (n = 183). Sociodemographic data were compiled from federal surveys before and after Hurricane Matthew to construct, per prior literature, a social capital index based on four dimensions of social capital (sub-indices): family unity, informal civil society, institutional confidence, and collective efficacy. Epidemiological data comprised monthly CVD mortality rates constructed from monthly county-level CVD death counts from the CDC WONDER database and the US Census population estimates. Changes in CVD mortality based on level of hurricane damage were assessed using regression adjustment. We used cluster robust Poisson population average models to determine the moderating effect of social capital on CVD mortality rates in both high and low-damage counties. Results We found that mean levels of CVD mortality increased (before and after adjustment for sociodemographic controls) in both low-damage counties (unadjusted. Mean = 2.50, 95% CI [2.41, 2.59], adjusted mean = 2.50, 95% CI [2.40, 2.72]) and high-damage counties (mean = 2.44, CI [2.29, 2.46], adj. Mean = 2.51, 95% CI [2.49, 2.84]). Among the different social capital dimensions, institutional confidence was associated with reduced initial CVD mortality in low-damage counties (unadj. IRR 1.00, 95% CI [0.90, 1.11], adj. IRR 0.91 CI [0.87, 0.94]), but its association with CVD mortality trends was null. The overall effects of social capital and its sub-indices were largely nonsignificant. Conclusion Hurricane damage is associated with increased CVD mortality for 18 months after Hurricane Matthew. The role of social capital remains unclear. Future research should focus on improving measurement of social capital and quality of hurricane damage and CVD mortality data.
Keywords