Plants (Dec 2023)

Proteomic Analysis Revealed the Antagonistic Effect of Decapitation and Strigolactones on the Tillering Control in Rice

  • Yanhui Zhao,
  • Manrong Zha,
  • Congshan Xu,
  • Fangxu Hou,
  • Yan Wang

DOI
https://doi.org/10.3390/plants13010091
Journal volume & issue
Vol. 13, no. 1
p. 91

Abstract

Read online

Removing the panicle encourages the growth of buds on the elongated node by getting rid of apical dominance. Strigolactones (SLs) are plant hormones that suppress tillering in rice. The present study employed panicle removal (RP) and external application of synthesized strigolactones (GR) to modulate rice bud growth at node 2. We focused on the full-heading stage to investigate proteomic changes related to bud germination (RP-Co) and suppression (GR-RP). A total of 434 represented differentially abundant proteins (DAPs) were detected, with 272 DAPs explicitly specified in the bud germination process, 106 in the bud suppression process, and 28 in both. DAPs in the germination process were most associated with protein processing in the endoplasmic reticulum and ribosome biogenesis. DAPs were most associated with metabolic pathways and glycolysis/gluconeogenesis in the bud suppression process. Sucrose content and two enzymes of sucrose degradation in buds were also determined. Comparisons of DAPs between the two reversed processes revealed that sucrose metabolism might be a key to modulating rice bud growth. Moreover, sucrose or its metabolites should be a signal downstream of the SLs signal transduction that modulates rice bud outgrowth. Contemplating the result so far, it is possible to open new vistas of research to reveal the interaction between SLs and sucrose signaling in the control of tillering in rice.

Keywords