Acta Polytechnica (Jan 2013)
Intervals in Generalized Effect Algebras and their Sub-generalized Effect Algebras
Abstract
We consider subsets G of a generalized effect algebra E with 0∈G and such that every interval [0, q]G = [0, q]E ∩ G of G (q ∈ G , q ≠ 0) is a sub-effect algebra of the effect algebra [0, q]E. We give a condition on E and G under which every such G is a sub-generalized effect algebra of E.