Materials (Jul 2021)

Analytical Solution for Chloride Diffusivity of Concrete with Aggregate Shape Effect

  • Jian Zhang,
  • Zhuo-Xuan Ying,
  • Zhi-Wei Chen,
  • Hai-Long Wang,
  • Jian-Hua Li,
  • Hui Yue,
  • Jian-Jun Zheng

DOI
https://doi.org/10.3390/ma14143957
Journal volume & issue
Vol. 14, no. 14
p. 3957

Abstract

Read online

In view of the key role of chloride diffusivity in evaluating concrete durability, it is very important to determine this parameter accurately by an effective approach. This paper establishes an analytical solution for chloride diffusivity of concrete that can consider the aggregate shape. In this approach, the aggregate shape is simulated as an ellipse and the equivalent model is applied to calculate the chloride diffusivity of equivalent aggregate composed of interface transition zone (ITZ) and aggregate. With resort to this model, at the meso scale, the concrete can be reduced from the original three-phase composition to the two-phase one (i.e., equivalent aggregates and cement paste). Based on the mesostructure of concrete that consisted of randomly dispersed equivalent elliptical aggregates and cement paste, the generalized Maxwell’s approach is formed to determine the chloride diffusivity of concrete. The corresponding chloride diffusion test is conducted and the thickness of ITZ is reasonably determined as 0.04 mm by SEM test. By comparing with the experimental data, the accuracy of the analytical solution is confirmed. Finally, the impact of aggregate shape on chloride diffusivity is discussed. The analytical results show that the chloride diffusivity has a reduction with the increase of aggregate content or decrease of aspect ratio.

Keywords