Fractal and Fractional (Oct 2022)
Fractal Geometry and Convolutional Neural Networks for the Characterization of Thermal Shock Resistances of Ultra-High Temperature Ceramics
Abstract
The accurate characterization of the surface microstructure of ultra-high temperature ceramics after thermal shocks is of great practical significance for evaluating their thermal resistance properties. In this paper, a fractal reconstruction method for the surface image of Ultra-high temperature ceramics after repeated thermal shocks is proposed. The nonlinearity and spatial distribution characteristics of the oxidized surfaces of ceramics were extracted. A fractal convolutional neural network model based on deep learning was established to realize automatic recognition of the classification of thermal shock cycles of ultra-high temperature ceramics, obtaining a recognition accuracy of 93.74%. It provides a novel quantitative method for evaluating the surface character of ultra-high temperature ceramics, which contributes to understanding the influence of oxidation after thermal shocks.
Keywords