Weather and Climate Dynamics (Jul 2022)

The response of tropical cyclone intensity to changes in environmental temperature

  • J. M. Done,
  • J. M. Done,
  • G. M. Lackmann,
  • A. F. Prein

DOI
https://doi.org/10.5194/wcd-3-693-2022
Journal volume & issue
Vol. 3
pp. 693 – 711

Abstract

Read online

Theory indicates that tropical cyclone (TC) intensity should respond to environmental temperature changes near the surface and in the TC outflow layer. While the sensitivity of TC intensity to sea surface temperature is well understood, less is known about the role of upper-level stratification. In this paper, we combine historical data analysis and idealised modelling to explore the extent to which historical low-level warming and upper-level stratification can explain observed trends in the TC intensity distribution. Observations and modelling agree that historical global environmental temperature changes coincide with higher lifetime maximum intensities. Observations suggest the response depends on the TC intensity itself. Hurricane-strength storms have intensified at twice the rate of weaker storms per unit surface and upper-tropospheric warming, and we find faster warming of low-level temperatures in hurricane environments than the tropical mean. Idealised simulations respond in the expected sense to various imposed changes in the near-surface temperature and upper-level stratification representing present-day and end-of-century thermal profiles and agree with TCs operating as heat engines. Removing upper-tropospheric warming or stratospheric cooling from end-of-century experiments results in much smaller changes in potential intensity or realised intensity than between present day and the end of the century. A larger proportional change in thermodynamic disequilibrium compared to thermodynamic efficiency in our simulations suggests that disequilibrium, not efficiency, is responsible for much of the intensity increase from present day to the end of the century. The limited change in efficiency is attributable to nearly constant outflow temperature in the simulated TCs among the experiments. Observed sensitivities are generally larger than modelled sensitivities, suggesting that observed TC intensity change responds to a combination of the temperature change and other environmental factors.