BMC Nephrology (Dec 2019)
The improvement of QRS-T angle as a manifestation of reverse electrical remodeling following renal transplantation in end-stage kidney disease patients on haemodialysis
Abstract
Abstract Background Successful renal transplantation (RT) reverses some of the cardiac changes and reduces cardiac mortality in hemodialysis (HD) patients. Widened QRS-T angle reflects both ventricular repolarization and depolarization. It is considered a sensitive and strong predictor of heart ventricular remodeling as well as a powerful and independent risk stratifier suitable in predicting cardiac events in various clinical settings. The study aimed to assess the influence of the RT on QRS-T angle and to evaluate factors influencing QRS-T changes in renal transplanted recipients (RTRs). Methods Fifty-four selected HD patients who have undergone RT were included. Blood chemistry, echocardiography, and QRS-T angle were evaluated 5 times: about 1 week, 3 months, 6 months, 1 year and 3 years after RT. Results An improvement of echocardiographic parameters was observed. The dynamics of changes in individual parameters were, however, variable. QRS-T angle correlated with echocardiographic parameters. The biphasic pattern of the decreases of QRS-T angle was observed. The first decrease took place in the third month of follow-up. The second decrease of QRS-T angle was observed after 1 year of follow-up. The QRS-T angle was higher in RTRs compared with controls during each evaluation. Multivariable analysis demonstrated that the decrease of left ventricle enddiastolic volume was an independent predictor of early QRS-T angle improvement. The increase of left ventricle ejection fraction was found to be the independent predictor of the late QRS-T angle improvement. Conclusions RT induces biphasic reverse electrical remodeling as assessed by the narrowing of QRS-T angle. Early decrease of QRS-T angle is mainly due to the normalization of volume status, whereas late decrease is associated predominantly with the improvement of cardiac contractile function.
Keywords