Journal of High Energy Physics (May 2023)
On (scalar QED) gravitational positivity bounds
Abstract
Abstract We study positivity bounds in the presence of gravity. We first review the gravitational positivity bound at the tree-level, where it is known that a certain amount of negativity is allowed for the coefficients of higher-derivative operators. The size of these potentially negative contributions is estimated for several tree-level, Reggeized gravitational amplitudes which are unitary at high energies and feature the t-channel pole characteristic of graviton exchange. We also argue for the form of the one-loop Regge amplitude assuming that the branch cut structure associated with the exchange of the graviton and higher-spin particles is reflected. We demonstrate how the one-loop Regge amplitude appears by summing over Feynman diagrams. For our one-loop amplitude proposal, the positivity bounds generically receive a finite contribution from the Regge tower and do not lead to a parametrically small bound on the cut-off scale of the low-energy EFT, consistent with recent studies based on sum rules of the amplitude.
Keywords