Applied Sciences (Feb 2022)

Utilising Acknowledge for the Trust in Wireless Sensor Networks

  • Hosam Alrahhal,
  • Razan Jamous,
  • Rabie Ramadan,
  • Abdulaziz M. Alayba,
  • Kusum Yadav

DOI
https://doi.org/10.3390/app12042045
Journal volume & issue
Vol. 12, no. 4
p. 2045

Abstract

Read online

Wireless Sensor Networks (WSNs) are emerging networks that are being utilized in a variety of applications, such as remote sensing images, military, healthcare, and traffic monitoring. Those critical applications require different levels of security; however, due to the limitation of the sensor networks, security is a challenge where traditional algorithms cannot be used. In addition, sensor networks are considered as the core of the Internet of Things (IoT) and smart cities, where security became one of the most significant problems with IoT and smart cities applications. Therefore, this paper proposes a novel and light trust algorithm to satisfy the security requirements of WSNs. It considers sensor nodes’ limitations and cross-layer information for efficient secure routing in WSNs. It proposes a Tow-ACKs Trust (TAT) Routing protocol for secure routing in WSNs. TAT computes the trust values based on direct and indirect observation of the nodes. TAT uses the first-hand and second-hand information from the Data Link and the Transmission Control Protocol layers to modify the trust’s value. The suggested TATs’ protocols performance is compared to BTRM and Peertrust models in terms of malicious detection ratio, accuracy, average path length, and average energy consumption. The proposed algorithm is compared to BTRM and Peertrust models, the most recent algorithms that proved their efficiency in WSNs. The simulation results indicate that TAT is scalable and provides excellent performance over both BTRM and Peertrust models, even when the number of malicious nodes is high.

Keywords