European Physical Journal C: Particles and Fields (Apr 2018)
Black hole evaporation, quantum hair and supertranslations
Abstract
Abstract In a black hole, hair and quantum information retrieval are interrelated phenomena. The existence of any new form of hair necessarily implies the existence of features in the quantum-mechanically evaporated radiation. Therefore, classical supertranslation hair can be only distinguished from global diffeomorphisms if we have access to the interior of the black hole. Indirect information on the interior can only be obtained from the features of the quantum evaporation. We demonstrate that supertranslations $$(T^-,T^+) \in BMS_{-}\otimes BMS_{+}$$ (T-,T+)∈BMS-⊗BMS+ can be used as bookkeepers of the probability distributions of the emitted quanta where the first element describes the classical injection of energy and the second one is associated to quantum-mechanical emission. However, the connection between $$T^-$$ T- and $$T^+$$ T+ is determined by the interior quantum dynamics of the black hole. We argue that restricting to the diagonal subgroup is only possible for decoupled modes, which do not bring any non-trivial information about the black hole interior and therefore do not constitute physical hair. It is shown that this is also true for gravitational systems without horizon, for which both injection and emission can be described classically. Moreover, we discuss and clarify the role of infrared physics in purification.