Advanced Intelligent Systems (Feb 2023)

Mechanical System with Soft Modules and Rigid Frames Realizing Logic Gates and Computation

  • Yubo Zhang,
  • Zheng Qian,
  • Juncheng Zhuang,
  • Siping Fan,
  • Huaxian Wei,
  • Nan Yang

DOI
https://doi.org/10.1002/aisy.202200374
Journal volume & issue
Vol. 5, no. 2
pp. n/a – n/a

Abstract

Read online

Mechanical computation outperforms electrical computation in applications under extreme conditions. Currently, logic gates can be constructed with mechanical metamaterials, but this may require complex architectures and computing rules, and more complex computations based on these gates are considerably more challenging. Mechanical computing systems with multistability cannot return to their initial stable states, which are hardly reused. Moreover, providing digital electrical outputs is useful to communicate with electrical systems. To address these issues, mechanical metamaterials can be integrated in a manner that is similar to a circuit network with a powerful computing capability. Herein, a general method that combines soft convex and concave modules, rigid frames, and conductive materials in one system to realize logic gates, addition, and multiplication is proposed. The soft modules make or break electrical connections with adjacent frames due to the presence or absence of compressive forces, operating as open and closed switches. Connections and disconnections between modules and frames can be demonstrated with conductive materials and LEDs. The proposed mechanism is simple, versatile, and reusable, allowing soft mechanical metamaterial units to carry out complex computations. The approach may improve the capabilities of soft robots, robotic materials, and microelectromechanical systems.

Keywords