Nature Communications (Jan 2022)

Comparing ultrastable lasers at 7 × 10−17 fractional frequency instability through a 2220 km optical fibre network

  • M. Schioppo,
  • J. Kronjäger,
  • A. Silva,
  • R. Ilieva,
  • J. W. Paterson,
  • C. F. A. Baynham,
  • W. Bowden,
  • I. R. Hill,
  • R. Hobson,
  • A. Vianello,
  • M. Dovale-Álvarez,
  • R. A. Williams,
  • G. Marra,
  • H. S. Margolis,
  • A. Amy-Klein,
  • O. Lopez,
  • E. Cantin,
  • H. Álvarez-Martínez,
  • R. Le Targat,
  • P. E. Pottie,
  • N. Quintin,
  • T. Legero,
  • S. Häfner,
  • U. Sterr,
  • R. Schwarz,
  • S. Dörscher,
  • C. Lisdat,
  • S. Koke,
  • A. Kuhl,
  • T. Waterholter,
  • E. Benkler,
  • G. Grosche

DOI
https://doi.org/10.1038/s41467-021-27884-3
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 11

Abstract

Read online

Precision measurement plays an important role in frequency metrology and optical communications. Here the authors compare two geographically separate ultrastable lasers at 7 × 10−17 fractional frequency instability over a 2220 km optical fibre link and these measurements can be useful for dissemination of ultrastable light to distant optical clocks.