International Journal of Plant Biology (Mar 2012)

Frost-acclimation of photosynthesis in overwintering Mediterranean holm oak, grown in Central Europe

  • Ellen Pflug,
  • Wolfgang Brüggemann

DOI
https://doi.org/10.4081/pb.2012.e1
Journal volume & issue
Vol. 3, no. 1
pp. e1 – e1

Abstract

Read online

As a consequence of global change, forestry in Central Europe has to expect and be prepared for an increase of hot and dry summers in the near future. In two model plantations of the Mediterranean holm oak (Quercus ilex L.) in Central Europe (Rhine-Main basin) we tested its potential as a future forestry tree for drought-threatened stands by studying its overwintering strategy under harsh winter conditions. During prolonged frost periods, chronic photoinhibition was developed, which lasted until the end of the frost period. Nearly all plants survived minimum temperatures of - 16 to -18°C and their photosynthetic apparatus recovered completely during late winter. A detailed study of the temperature dependence of chlorophyll (chl) fluorescence parameters of the OJIP test revealed statistically significant correlations between minimum temperature and maximum quantum yield of primary photochemistry (Fv/Fm), absorption rate/reaction centre (ABS/RC), dissipation rate/reaction centre (DI0/RC) and electron transport rate/reaction centre (ET0/RC) as well as with the deepoxidation state (DES) of the xanthophyll pigments. The DES correlated with Fv/Fm, ABS/RC, DI0/RC and ET0/RC. It is concluded, that from the point of view of the winter hardiness of the photosynthetic apparatus, Q. ilex should be further investigated as a potential future forestry tree also for very dry and warm stands in Central Europe under the scenarios of climate change.

Keywords