Pharmaceuticals (Aug 2024)
Computational Design and Optimization of Peptide Inhibitors for SIRT2
Abstract
Sirtuin 2 (SIRT2), an NAD+-dependent deacetylase, is crucial for regulating vital physiological processes, including aging, DNA repair, and cell cycle progression. Its abnormal activity is linked to diseases such as Parkinson’s disease, cancer, and metabolic disorders, making it a potential target for therapeutic intervention. While small molecule inhibitors have been studied, peptide-based inhibitors offer a promising alternative due to their selectivity and bioavailability. This study explores the effects of converting the naturally occurring cyclic inhibitor peptide of SIRT2 (S2iL5) into a non-cyclic form by replacing a residue with FAK (LYS + CF3CO−). The new peptide sequence, Tyr-His-Thr-Tyr-His-Val-FAK (LYS)-Arg-Arg-Thr-Asn-Tyr-Tyr-Cys, was modeled to confirm its stable conformation. Docking studies and MM/GBSA calculations showed that the non-cyclic peptide had a better binding free energy (−50.66 kcal/mol) compared to the cyclic S2iL5 (−49.44 kcal/mol). Further mutations generated 160,000 unique peptides, screened using a machine learning-based QSAR model. Three promising peptides (Peptide 1: YGGNNVKRRTNYYC, Peptide 2: YMGEWVKRRTNYYC, and Peptide 3: YGGNGVKRRTNYYC) were selected and further modeled. Molecular dynamics (MD) analyses demonstrated that Peptide 1 and Peptide 2 had significant potential as SIRT2 inhibitors, showing moderate stability and some structural flexibility. Their best binding free energies were −59.07 kcal/mol and −46.01 kcal/mol, respectively. The study aimed to enhance peptide flexibility and binding affinity, suggesting that optimized peptide-based inhibitors can interact effectively with SIRT2. However, further experimental validation is necessary to confirm these computational predictions and evaluate the therapeutic potential of the identified peptides.
Keywords