Nature Communications (Oct 2024)
Synergistic wall digestion and cuproptosis against fungal infections using lywallzyme-induced self-assembly of metal-phenolic nanoflowers
Abstract
Abstract Fungi are very common infectious pathogens, which may cause invasive and potentially life-threatening infections. However, the efficacy of antifungal medications remains limited. Herein, a Cu2+-phenolic nanoflower is designed to combat fungal infections by combining cuproptosis and cell wall digestion. Firstly, protocatechuic acid (PA)-Cu2+ (PC) nanopetals are prepared by coordination interaction. Lywallzyme (Lyw) is then added to induce the self-assembly of PC to form Lyw loaded PC (PCW) nanoflowers. PCW nanoflowers can effectively adhere to fungal surface and Lyw can digest fungal cell walls to facilitate Cu2+ to penetrate into fungal interior, thereby exerting a synergistic fungicidal effect. PCW nanoflowers exhibit excellent fungicidal activity even in protein-rich and high-salt conditions, where dissociative Cu2+ completely loses fungicidal activity. Transcriptome sequencing analysis reveals that PCW can lead to fungal cuproptosis. The in vivo fungicidal effect of PCW nanoflowers is confirmed on a murine skin fungal infection model and a murine fungal keratitis model.