The enzymatic dissociation of human solid tissues is a critical process for disaggregating extracellular matrix and the isolation of individual cells for various applications, including the immortalizing primary cells, creating novel cell lines, and performing flow cytometry and its specialized type, FACS, as well as conducting scRNA-seq studies. Tissue dissociation procedures should yield intact, highly viable single cells that preserve morphology and cell surface markers. However, endocrine tissues, such as adrenal gland tumors, thyroid carcinomas, and pituitary neuroendocrine tumors, present unique challenges due to their complex tissue organization and morphological features. Our study conducted a morphological examination of these tissues, highlighting the intricate structures and secondary degenerative changes that complicate the dissociation process. We investigated the effects of various dissociation parameters, including the types of enzymes, incubation duration, and post-dissociation purification procedures, such as debris removal and nontarget blood cell lysis, on the viability of cells derived from different tumor types. The findings emphasize the importance of optimizing tissue digestion protocols to preserve cell viability and integrity, ensuring reliable outcomes for downstream analyses.