European Urology Open Science (Oct 2021)

Prediction of Metastatic Patterns in Bladder Cancer: Spatiotemporal Progression and Development of a Novel, Web-based Platform for Clinical Utility

  • Jeremy Mason,
  • Zaki Hasnain,
  • Gus Miranda,
  • Karanvir Gill,
  • Hooman Djaladat,
  • Mihir Desai,
  • Paul K. Newton,
  • Inderbir S. Gill,
  • Peter Kuhn

Journal volume & issue
Vol. 32
pp. 8 – 18

Abstract

Read online

Background: Bladder cancer (BCa), the sixth commonest cancer in the USA, is highly lethal when metastatic. Spatial and temporal patterns of patient-specific metastatic spread are deemed random and unpredictable. Whether BCa metastatic patterns can be quantified and predicted more accurately is unknown. Objective: To develop a web-based calculator for forecasting metastatic progression in individual BCa patients. Design, setting, and participants: We used a prospectively collected longitudinal dataset of 3503 BCa patients who underwent a radical cystectomy following diagnosis and were enrolled continuously. We subdivided patients by their pathologic subgroup stages of organ confined (OC), extravesical (EV), and node positive (N+). We illustrated metastatic pathway progression using color-coded, circular, tree ring diagrams. We created a dynamical, data-visualization, web-based platform that displays temporal, spatial, and Markov modeling figures with predictive capability. Outcome measurements and statistical analysis: Patients underwent history and physical examination, serum studies, and liver function tests. Surveillance follow-up included computed tomography scans, chest x-rays, and radiographic evaluation of the reservoir and upper tracts, with bone scans performed only if clinically indicated. Outcomes were measured by time to clinical recurrence and overall or progression-free survival. Results and limitations: Metastases developed in 29% of patients (n = 812; median follow-up 15.3 yr), with 5-yr overall survival of 20.2%, compared with 78.6% in those without metastases (n = 1983; median follow-up 10.9 yr). The three commonest sites of spread at the time of first progression were bone (n = 214; 26.4%), pelvis (n = 194; 23.9%), and lung (n = 194; 23.9%). The order and frequency of these sites vary when divided by pathologic subgroup stages of OC (lung [n = 65; 25.1%], urethra [n = 45; 17.4%], and bone [n = 29; 11.2%]), EV (pelvis [n = 63; 33.0%], bone [n = 45; 23.6%], and lung [n = 29; 15.2%]), and N+ (bone [n = 111; 30.7%], retroperitoneum [n = 70; 19.3%], and pelvis [n = 60; 16.6%]). Markov chain modeling indicated a higher probability of spread from bladder to bone (15.5%), pelvis (14.7%), and lung (14.2%). Conclusions: Our web-based calculator allows real-time analyses in the clinic based on individual patient-specific demographic and cancer data elements. For contrasting subgroups, the models indicated differences in Markov transition probabilities. Spatiotemporal patterns of BCa metastasis and sites of spread indicated underlying organotropic mechanisms in the prediction of response. This recognition opens the possibility of organ site–specific therapeutic targeting in the oligometastatic BCa setting. In the precision medicine era, visualization of complex, time-resolved clinical data will enhance management of postoperative metastatic BCa patients. Patient summary: We developed a web-based calculator to forecast metastatic progression for individual bladder cancer (BCa) patients, based on the clinical and demographic information obtained at diagnosis. This can help in predicting disease status and survival, and improving management in postoperative metastatic BCa patients. Take Home Message: Future pathways of metastatic progression for individual bladder cancer patients can be determined based on currently available clinical and demographic information obtained at diagnosis. In focused subgroups of patients, these metastatic spread patterns can also portend disease status and survival.

Keywords