High Power Laser Science and Engineering (Jan 2023)
Automated control and optimization of laser-driven ion acceleration
- B. Loughran,
- M. J. V. Streeter,
- H. Ahmed,
- S. Astbury,
- M. Balcazar,
- M. Borghesi,
- N. Bourgeois,
- C. B. Curry,
- S. J. D. Dann,
- S. DiIorio,
- N. P. Dover,
- T. Dzelzainis,
- O. C. Ettlinger,
- M. Gauthier,
- L. Giuffrida,
- G. D. Glenn,
- S. H. Glenzer,
- J. S. Green,
- R. J. Gray,
- G. S. Hicks,
- C. Hyland,
- V. Istokskaia,
- M. King,
- D. Margarone,
- O. McCusker,
- P. McKenna,
- Z. Najmudin,
- C. Parisuaña,
- P. Parsons,
- C. Spindloe,
- D. R. Symes,
- A. G. R. Thomas,
- F. Treffert,
- N. Xu,
- C. A. J. Palmer
Affiliations
- B. Loughran
- ORCiD
- School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK
- M. J. V. Streeter
- ORCiD
- School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK
- H. Ahmed
- ORCiD
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
- S. Astbury
- ORCiD
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
- M. Balcazar
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI, USA
- M. Borghesi
- School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK
- N. Bourgeois
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
- C. B. Curry
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
- S. J. D. Dann
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
- S. DiIorio
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI, USA
- N. P. Dover
- The John Adams Institute for Accelerator Science, Imperial College London, London, UK
- T. Dzelzainis
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
- O. C. Ettlinger
- The John Adams Institute for Accelerator Science, Imperial College London, London, UK
- M. Gauthier
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- L. Giuffrida
- ELI Beamlines Centre, Institute of Physics, Czech Academy of Sciences, Dolní Břežany, Czech Republic
- G. D. Glenn
- ORCiD
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA Department of Applied Physics, Stanford University, Stanford, CA, USA
- S. H. Glenzer
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- J. S. Green
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
- R. J. Gray
- ORCiD
- Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
- G. S. Hicks
- The John Adams Institute for Accelerator Science, Imperial College London, London, UK
- C. Hyland
- School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK
- V. Istokskaia
- ELI Beamlines Centre, Institute of Physics, Czech Academy of Sciences, Dolní Břežany, Czech Republic Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- M. King
- Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
- D. Margarone
- ORCiD
- School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK ELI Beamlines Centre, Institute of Physics, Czech Academy of Sciences, Dolní Břežany, Czech Republic
- O. McCusker
- School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK
- P. McKenna
- ORCiD
- Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
- Z. Najmudin
- The John Adams Institute for Accelerator Science, Imperial College London, London, UK
- C. Parisuaña
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
- P. Parsons
- School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK
- C. Spindloe
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
- D. R. Symes
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
- A. G. R. Thomas
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI, USA
- F. Treffert
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
- N. Xu
- The John Adams Institute for Accelerator Science, Imperial College London, London, UK
- C. A. J. Palmer
- ORCiD
- School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK
- DOI
- https://doi.org/10.1017/hpl.2023.23
- Journal volume & issue
-
Vol. 11
Abstract
The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimization. Here, an automated, HRR-compatible system produced high-fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimization of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.
Keywords
- Bayesian optimization
- high repetition-rate laser–target interaction
- laser-driven particle acceleration
- proton generation