Quantum plasmonics: from jellium models to ab initio calculations
Varas Alejandro,
García-González Pablo,
Feist Johannes,
García-Vidal F.J.,
Rubio Angel
Affiliations
Varas Alejandro
Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Universidad del País Vasco UPV/EHU, CFM CSIC-UPV/EHU, Av. de Tolosa 72, E-20018 Donostia, San Sebastián, Spain
García-González Pablo
Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Cantoblanco, Madrid, Spain
Feist Johannes
Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Cantoblanco, Madrid, Spain
García-Vidal F.J.
Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Cantoblanco, Madrid, Spain
Rubio Angel
Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Universidad del País Vasco UPV/EHU, CFM CSIC-UPV/EHU, Av. de Tolosa 72, E-20018 Donostia, San Sebastián, Spain
Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT) calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.