Chemical Industry and Chemical Engineering Quarterly (Mar 2011)
QSAR MODELING OF ANTIBACTERIAL ACTIVITY OF SOME BENZIMIDAZOLE DERIVATIVES
Abstract
A quantitative structure-activity relationship (QSAR) study has been carried out for a training set of 12 benzimidazole derivatives to correlate and predict the antibacterial activity of studied compounds against Gram-negative bacteria Pseudomonas aeruginosa. Multiple linear regression was used to select the descriptors and to generate the best prediction model that relates the structural features to inhibitory activity. The predictivity of the model was estimated by cross-validation with the leave-one-out method. Our results suggest a QSAR model based on the following descriptors: parameter of lipophilicity (logP) and hydration energy (HE). Good agreement between experimental and predicted inhibitory values, obtained in the validation procedure, indicated the good quality of the generated QSAR model.