Journal of Marine Science and Engineering (Apr 2024)
Submarine Morphological Description of the Ancient Archipelagic Aprons in the Marcus–Wake Seamount Group, Northwestern Pacific Ocean
Abstract
Herein, the morphological characteristics of submarine archipelagic aprons were presented for five guyots, Suda, Arnold, Lamont, Niulang, and Zhinyv, which are over 80 Ma years old and are located in the Marcus–Wake seamount group, northwestern Pacific Ocean. Nearly 28 landslide deposits were recognized using the bathymetry and backscatter intensity data collected from the studied guyots. Landslides and their deposits that surround seamounts are mostly related to the morphology of debris avalanches, scarps, gullies/channels, and bedforms. The morphology of the archipelagic aprons of the studied guyots indicates mutual landslide processes, including slump and distinct debris avalanches arising from a cohesive or cohesionless landslide material flow. The superimposition of debris flows and sedimentation dominates the recent stages of the studied guyots. The archipelagic aprons corresponding to convex-arc-shaped scarps exhibit larger domains compared to the invagination-arc-shaped scarps with similar lateral lengths. The scarp morphologies of the studied guyots are predominantly of the complex-arc shape, indicating multiple landslide events. Parallel and convergent gullies and channels are mostly found on the elongated landslide deposits, whereas divergent and radial gullies and channels are mostly distributed on the fan-shaped aprons. Ubiquitous sediment waves occurred on the bedforms of the distal archipelagic apron across the studied guyots because of sediment creep. Small-scale sediment waves were only observed in the channels on the aprons of the Suda guyot.
Keywords