Polyoxometalates (Jun 2023)

Photoactive hourglass-type M{P4Mo6}2 networks for efficient removal of hexavalent chromium

  • Xiao-Yu Yin,
  • Hao-Xue Bi,
  • Hao Song,
  • Jing-Yan He,
  • Yuan-Yuan Ma,
  • Ting-Ting Fang,
  • Zhan-Gang Han

DOI
https://doi.org/10.26599/POM.2023.9140027
Journal volume & issue
Vol. 2, no. 2
pp. 9140027 – 9140027

Abstract

Read online

The exploration of high-efficiency photocatalysts to drive the conversion of highly toxic heavy metal hexavalent chromium (Cr(VI)) in wastewater to low-toxic trivalent chromium (Cr(III)) is of great significance for purifying water that contains emerging contaminants. Herein, four hourglass-type phosphomolybdate-based hybrid networks—(H2bpe)2[M(H2O)3]2{M[P4Mo6O31H7]2}·8H2O (M = Mn for 1, Co for 2) and (Hbpe)(H2bpe)Na[M(H2O)3]2{M[P4Mo6O31H7]2}·9H2O (M = Mn for 3, Co for 4; {M[P4Mo6O31H7]2}8− (abbr. M{P4Mo6}2); bpe = 1,2-di(4-pyridyl)ethylene)—were hydrothermally synthesized as heterogeneous photocatalysts for Cr(VI) reduction. A structural analysis showed that the four hybrids 1–4 exhibited two-dimensional inorganic sheet-like structures with a 3,6-connected kgd topology built of hourglass phosphomolybdate clusters having different central metal ions, which further interacted with organic bpe cations via abundant hydrogen-bonding interactions to extend the structure to a three-dimensional (3D) supramolecular network. The four hybrids displayed excellent redox properties and wide visible-light absorption. When used as heterogeneous photocatalysts, hybrids 1–4 exhibited excellent photocatalytic activity for Cr(VI) reduction under 10 W white light irradiation, with reduction rates of 91% for 1, 74% for 2, 90% for 3, and 71% for 4, respectively, within 80 min. The Cr(VI) reduction reaction over hybrids 1–4 followed the pseudo first-order kinetics model with reaction rate constants k of 0.0237 min−1 for 1, 0.0143 min−1 for 2, 0.0221 min−1 for 3 and 0.0134 min−1 for 4, respectively. The Mn{P4Mo6}2-based hybrids 1 and 3 showed better photocatalytic performance than the Co{P4Mo6}2-based hybrids 2 and 4, along with excellent recycle stability. This mechanism study shows that the different central metals M in the M{P4Mo6}2 cluster have a considerable impact on photocatalytic performance due to their regulation effect on the electronic structure. This work provides evidence for the important role of the central metal in hourglass-type phosphomolybdate in the regulation of photocatalytic performance, and it brings inspiration for the design of highly efficient photocatalysts based on polyoxometalates.

Keywords