Advances in Mechanical Engineering (Nov 2019)
Modelling and optimization of a modified sequential multilateration method for three-dimensional coordinate collection
Abstract
This article proposes a modified sequential multilateration method for measuring three-dimensional coordinates. The measuring system consists of a single laser tracker and four relay targets whose relative positions have been pre-calibrated by the multilateration method. The laser tracker is fixed on three prescribed positions successively, and these positions can be calibrated by using the distances between the laser tracker and the four relay targets based on the multilateration principle. Subsequently, the three-dimensional coordinates of each under-test point can be determined by the three laser trackers’ positions based on the trilateration principle. This method is more flexible than previous multilateration methods for three-dimensional coordinate collection, especially if the measurement space is partially covered by other objects. The mathematical model of this method is established. Based on the Monte Carlo method, a series of computer simulations are performed to optimize the system arrangement by investigating the performances of the measuring system with different system arrangement, and an optimal system arrangement is finally obtained. Practical measurement is also conducted to demonstrate the validity of the proposed method by comparing with a reference coordinate measuring machine.